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Validation Study: Wiley SmartSpectra 
Raman Database 
Raman Spectral Prediction Using Neural Networks  

Abstract 

 

As the demand for Raman spectra increases, Wiley Science Solutions has embarked on the 
challenge to develop a computed library of Raman spectra within the constraints of our 
current empirical Raman collection chemical space. The Wiley Raman SmartSpectra 
Database is a computed spectral library that offers access to 33,163 computed records.* 
This database is designed to expand the chemical space covered as a supplement to our 
comprehensive collection of empirical, measured Raman spectra1. It can help users further 
elucidate the possible identity of unknowns when an empirical library match is not 
available.   

 
The model uses a custom-built chemical structure fingerprint as the input and predicts a 
Raman spectrum as the output. This prediction model was evaluated by an external 
validation test using JASCO data2, to accompany the model’s test set, in which the JASCO 
empirical data were searched against the predicted version of these records. The results 
returned the corresponding target structure in the top ten hits over 82% of the time, as 
compared to the model’s own test set of 91%.   

* Represents the number of spectra in the collection as of the publication of this study. 
 

Introduction 
 

The recent increase in demand for Raman spectra has fueled the development for more 
experimental Raman analysis of chemical compounds. Wiley already publishes one of the 
largest Raman collections available, the KnowItAll Raman Spectral Database Collection, 
accessible through Wiley’s software, KnowItAll 24.0.59.03. With the goal to expand Wiley’s 
Raman coverage within the bounds of the existing Raman collection, a predictive model was 
created to increase the number of characterized compounds. The model was able to improve 
the coverage of Raman within the current collection’s chemical space, filling in some of the 
theoretical missing gaps with computed spectra. To confirm and increase the accuracy of 
the Raman predictions, validation tools were developed to carry out additional tests on the 
predictions.   
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The computed Raman library was designed to help identify an unknown when an empirical 
library match of sufficient quality is not available to the user, i.e., in the theoretical case of 
a true unknown. When used in tandem with the empirical Raman libraries, the computed 
library can be used as an aide to help characterize or classify the structural composition of 
an unknown spectrum by providing information about the structural makeup, such as 
functional groups and chemical structure backbone. However, the computed Raman library 
is not a substitute for empirical Raman libraries. Although there are cases where the 
computed Raman library will fully characterize a compound with a computed Raman 
spectrum, typically results will only provide part of the identity of the unknown compound.   

The computed library should be used, after searching the empirical Raman libraries, to 
gather additional information about the unknown compound or if the empirical search 
results were inconclusive. The computed library's purpose is to characterize compounds not 
previously available in our catalog, with the compound still falling within the bounds of our 
chemical space. This provides the benefit of access to a more comprehensive selection of 
compounds and to improved overall coverage and selectivity. This paper presents the 
computational methods used to develop the model and library, while also exploring the 
quality of the predictions through automatic validation using HQI (hit quality index) and 
manual validation by subject matter experts.   

Methods 
Model Architecture 

The model takes a custom-built chemical structure fingerprint4 as the input and predicts a 
Raman spectrum as the output. The architecture consists of an input layer followed by 
multiple dense layers with ReLU (Rectified Linear Unit)5 activation. Dropout regularization6 
is applied after each dense layer7 to prevent overfitting8. The final layer uses Sigmoid 
activation9 to produce the predicted spectrum. The model is constructed using the Keras 
library version 2.10.010 and TensorFlow version 2.10.111.  

Hit List Automatic Validation  
Due to the novelty and experimental nature of the computed library, an external validation 
study12 was performed. The model naturally produced a traditional test set for initial 
analysis, which under typical circumstances would be sufficient. However, because this is a 
novel computed library, it was decided to employ an additional external validation test13. 
To evaluate the computed library in a realistic scenario, analysis hit lists were used as an 
accurate field test as to how users would experience using the library.   

Data 
Using experimental reference data was determined to be the best method to create a test 
for the computed library, in addition to the standard train/test split used in computer 
modelling. JASCO allowed the use of their Raman spectra database to test the ability of the 
prediction engine. The JASCO records that were not in Wiley’s library were used as a 
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prediction set for testing the search recall. The Wiley predicted version of the JASCO set 
was added to a catalog of Wiley Raman databases for testing. The searched databases 
contained around 8,000 records and the JASCO set contains 328 records within the model’s 
chemical space. This set of tests was created with the original model’s test set, the JASCO 
test set alone, and the JASCO test set combined with Wiley’s Raman standards. This was 
accomplished using KnowItAll software in an automatic batch method that automatically 
exports a csv of the results.   

SearchIt   

“SearchIt” is a KnowItAll application used to search a spectrum, peaks, chemical structure, 
or property value against selected databases. For this test, we used spectrum searching 
alone. We used the KnowItAll correlation search algorithm14, with and without employing 
KnowItAll’s patented optimized corrections. Optimized corrections, among other functions, 
removes impurities from the spectrum, which can affect and often improve spectral search 
matching.   

Hit List Analysis  
The hit list output was performed using a custom KnowItAll development tool. Two sets of 
different replicates derived from the test set were used in the analysis. These derived sets 
are designed to find the other’s matching structure through an exact structure search within 
the hit list and have a structure match in the computed data set as well. For the validation 
test to function correctly, there can only be a single match of the compounds in each 
database to give accurate hit list results. In effect, there are three databases:  
 

1) one computed test set,  
2) the experimental test set, and  
3) the target replicate set to search on the other two sets.   

 
To supplement the low amount of replicate data, additional test sets were sourced to run a 
hit list analysis on. The analysis hinges on the same principles as the replicate analysis, but 
with only two data sets. The first data set that does the searching is the original empirical 
spectrum, and the second data set is the computed SmartSpectra dataset that is searched 
on. This can be modified to increase the difficulty of the analysis by adding more empirical 
data to increase the chances that the corresponding records do not find each other. This 
test would apply the same principles of having a corresponding structure match to find the 
hit list position while seeing if the spectra were similar to each other based on HQI.   
 
With the automated analysis, the spectra in both the predicted and experimental test sets 
were searched against the replicate target database containing the alternative replicates. 
Initially, a spectral search was used to generate the hit list and then an exact structure 
search was performed on the hit list to find the position of the target replicate within the 
frame of each hit list. This was done to generate an external test for computed data using 
JASCO empirical data.   
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Spectrum/Structure Validation Model  

Wiley also developed a spectrum/structure validation model for the purpose of validating 
spectrum/structure pairs in the reference data. This model was also used on computed 
spectra, which gave another accuracy metric to identify and remove any poorly computed 
data that were outside the bounds of the underlying training set. The validation scores will 
be included with the computed library as an additional accuracy metric for user confidence. 
The validation model performs at a high level, producing test set scores at or above 85% 
for accuracy (85%), precision (79%), recall (93%), and F1 (85%).   

This validation model was trained on Wiley’s Raman spectral data records and the associated 
chemical structure converted into a chemical fingerprint with each record. It was impossible 
to validate those without a structure as there is no comparative metric to evaluate the initial 
spectrum. This model returned a statistic (0.0-1.0) for the probability that the spectrum 
and structure fingerprint are correct for each other. The model was trained in different 
oversampling techniques15 to create a resultant database for each outcome by type of 
oversampling method (e.g., spectral smoothing, added noise, etc.). These methods for 
adding replicate data were the best attempt at creating realistic scenarios for the model to 
learn of/from differing data that is technically correct. Here, the goal was to utilize examples 
of Raman spectra with slight contamination or with spectral measurements from differing 
instruments, as it is known that instruments of different brands can often provide different 
intensities16. These variations on the original data give our model varied datasets that allow 
for an accurate validation of the spectrum/structure pairing.   

Oversampled false match datasets were created with a similar concept behind them, 
including changes to the spectrum/structure pairing for the model to evaluate both 
properties before giving a score on whether the pairing can possibly be related to one 
another. This includes creating false oversampling techniques by changing either the 
spectrum or structure fingerprint, or both. These true negative oversampling methods allow 
the model to learn with ‘bad’ data as well, which is essential to the model’s accuracy.  

Validation and Review: Experimental spectra searched on the 
predicted test database  

Two test sets were derived from the 5% split test set that was generated during the model 
creation. Each set consisted of 537 records, where one set contained real experimental 
records and the other contained computed records. In the MineIt application, the first 100 
spectral records from the empirical data test set were used in the evaluation. Each of the 
100 records were transferred from the empirical data test set to the SearchIt application.   

The predicted data test set was selected as the user database to be searched. The chemical 
structure was then removed, leaving only the spectrum for conducting the search. The 
following parameters were used: the search algorithm was set to “Correlation”, “Optimized 
Corrections” was also selected as most people would use this in their search, and in the 
Advanced Settings, “Remove Duplicates” and “Remove Replicates” were deselected. The hit 
list size limit was set to 100. The spectral search was performed, and the hit list number 
was observed for the exact structure match from the predicted test set hit list. Other hits 
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on the hit list were also observed to note similarities and differences in the predicted 
results.  

Results and Discussion 

Chemical Space Coverage  

Elevation 180, Azim 0, empirical data only  

 

Elevation 180, Azim 0, predicted data added  
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Elevation 0, Azim 290, empirical data only  

 

Elevation 0, Azim 290, predicted data added  

 

Elevation 30, Azim 120, predicted data and JASCO data (green + enlarged) 
added  
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Chemical Space Coverage  

Overall  

The hit list test searches empirical data against the computed database. The first test 
returned good results, in which the empirical records found their corresponding computed 
record in the top 10 hits over 77% of the time. The second test used the same parameters 
but involved JASCO data to confirm the original test, resulting in the corresponding 
predicted record being in the top 10 hits over 82% of the time. For the third test, the second 
test with JASCO data was duplicated but with an additional 8,000 records added from the 
Sadtler standards Raman library suite (part of the KnowItAll Raman Spectral Database 
Collection) to simulate a larger pool of data for searching. This test resulted in the same hit 
list statistics as the previous test using JASCO data, in which the corresponding predicted 
record was in the top 10 hits over 81% of the time when searched against 24x the amount 
of data.  
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Replicate Analysis  

The replicates hit list analysis resulted in the predicted version of the replicates having an 
average position of 10. The replicates had a first position hit rate of 38% and a top 10 hit 
rate of 74%. This is due to the lack of replicates in our data. There were only 46 replicates 
in Wiley’s Raman libraries, therefore if there were any discrepancies their value would be 
increased compared to a more populated set of replicates. Since there were so few replicates 
and many of the records were closely related structures, the results were underwhelming. 
Additional hit list analyses were done to mitigate this lack of replicate data. To test the 
model’s capabilities further there were two separate test sets created to mitigate the lack 
of replicate data.   

Test Set Analysis  

The model’s test set was used in this analysis. Based on the model’s data split of 95% 
training and 5% test, there were a total of 537 records available for this validation test. The 
537 records had their structures removed and then computed in a separate database for 
this purpose. This computed database was then searched on in an automated fashion using 
a custom build of KnowItAll. The resulting analysis showed that the predicted data was the 
top hit 64% of the time and in the top ten 91% of the time.   

JASCO Hit List Analysis  
JASCO allowed the use of their Raman database to test Wiley’s Raman prediction model. 
The database was analyzed to select records not available in Wiley’s Raman computed 
model’s training library, thereby excluding a few hundred records. These records were then 
computed using the model and any records outside of the structure space were removed, 
leaving 328 records as a secondary test set for hit list analysis. After finalizing the JASCO 
test set, the predicted versions of the records were first run on their empirical counterparts. 
This initial hit list test resulted in a 58% rate of first hit and was in the top 10 hits 82% of 
the time.  

A second test using the JASCO dataset was performed by adding more databases to 
simulate a realistic scenario in which a user may include more databases. For this test, 
there were more Wiley empirical databases added to the search list along with the 
SmartSpectra computed JASCO database for a total of 8,536 records. This simulated a large 
database for Raman, with the target records only representing 4.1% of the data. The result 
of this test was a 56% rate of a first hit and an 81% top ten hit rate for the corresponding 
spectrum. The average hit position was 15th but only 19% of the records were outside of 
the top 10, indicating that the model’s average hit position was being negatively influenced 
by large hit positions when outside the top 10. When the hit results that were outside the 
hit list were removed, the percentages increased drastically. Discarding these extreme data 
points decreased the average hit position of the JASCO test set searched with Sadtler data 
to 5.7, increased the first hit percentage to 61% and increased the top ten hit percentage 
to 89%.  
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  Average Hit 
Position  

Top Ten 
Hit %  

Model Test Set  6.1  91%  

JASCO Test Set  13.1  82%  

JASCO Test Set with Sadtler Empirical Data  14.6  81%  
JASCO Test Set with Sadtler Empirical Data (Outliers 

Removed)  5.7  89%  

 

Manual Subject Matter Expert (SME) Validation   

The top 10 spectra hits of the hit list from the predicted data test set were very good spectral 
matches for the empirical data test set spectra. The functional groups and fingerprint region 
were well generated, resulting in the high hit list position. Additionally, the remaining 
percentage of spectra that had a hit list position greater than 100 still contained some good 
spectral matches that had poor hit list position due to similar compound coagulation. 
Overall, the analysis was good as there were high top ten percentages (92% and 77%). 
Although the rate of first hit declines from the test set compared to the total empirical 
collection, there were high percentages for the 2nd and 3rd hit (14% and 9%), which infers 
the top 3 hit positions were returned 66% of the time.  

 

Summary of Results  Experimental Data Test Set Evaluation  
• Searched against only the Predicted Data Test Set 
Raman Database  

Hit List Record 
Number  

Top 10: 99 records  
• Hit #1 = 73  
• Hit #2 = 12  
• Hit #3 = 4  
• Hit #4 = 2  
• Hit #5 = 3  
• Hit #6 = 2  
• Hit #7 = 1  
 • Hit #9 = 1  

Hit List Record 
Number  

Between Hit List Records #11 and #100:  7 records  
• #16, #16, #17, #20, #20, #28, #30  

Hit List Record 
Number  Not in Top 100: 2 records  
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Summary of Results  Experimental Data Test Set Evaluation  
• Searched against only the Predicted Data Test Set 
Raman Database and Experimental Raman 
Databases (~17k)  

Hit List Record 
Number  

Top 10: 83 records  
• Hit #1 = 46  
• Hit #2 = 15  
• Hit #3 = 10  
• Hit #4 = 4  
• Hit #5 = 4  
• Hit #6 = 2  
• Hit #7 = 1  
 • Hit #8 = 1  

Hit List Record 
Number  

Between Hit List Records #11 and #100:  13 
records  
• #19, #20, #21, #22, #26, #38, #39, #44, #45, #47, 
#63, #66, #78  

Hit List Record 
Number  Not in Top 100: 12 records  
 

High Molecular Weight Prediction Testing  

A tertiary test was conducted to determine whether the higher molecular weight predictions 
are as good as the lower molecular weight predictions. This test was designed as over 80% 
of the data in Wiley’s Raman collection are under 400 g/mol. An analysis was conducted to 
determine if a hard cutline of molecular weight should be implemented on the predicted 
library. There were 50 records above 384 g/mol from the Raman test set used for the 
analysis. The procedure for searching was done by transferring the empirical corresponding 
spectrum to SearchIt, removing the chemical structure, setting the algorithm to correlation, 
and limiting the hit list size to 100. Then, the search was performed first against the 
predicted test spectra only (537 records), followed by the predicted test spectra and Wiley’s 
collection of Raman spectra (~17k records). The lowest weight was 384 g/mol and the 
highest was 695 g/mol. The test had great results against only the predicted test set, where 
there was an 80% first hit rate, while testing against the predicted test set and the empirical 
Raman collection returned a lower first hit rate at 42%. The top ten hit percentages were 
very similar to each other as the analysis against only the predicted test set had a result of 
94%, and the analysis against the empirical and predicted test set had a result of 88%, 
which is very comparable.  

 

 

 



 

 11 

Summary of Results  Experimental Data Test Set Evaluation  
• Searched against only the Predicted Data Test Set 
Raman Database (537 records)  

Hit List Record 
Number  

Top 10: 47 records  
• Hit #1 = 40  
• Hit #2 = 2  
• Hit #3 = 3  
• Hit #4 = 1  
• Hit #6 = 1  

Hit List Record 
Number  

Between Hit List Records #11 and #100: 2 records  
• #16, #61  

Hit List Record 
Number  Not in Top 100: 1 record  
 
Summary of Results  Experimental Data Test Set Evaluation  

• Searched against the Predicted Data Test Set 
Raman Database and Experimental Raman 
Databases (~17k records)  

Hit List Record 
Number  

Top 10: 44 records  
• Hit #1 = 21  
• Hit #2 = 13  
• Hit #3 = 1  
• Hit #4 = 5  
• Hit #5 = 1  
• Hit #6 = 1  
• Hit #8 = 2  

Hit List Record 
Number  

Between Hit List Records #11 and #100: 4 records  
• #12, #18, #30, #62  

Hit List Record 
Number  Not in Top 100: 2 records  

 

Conclusion 
In conclusion, the Raman prediction model has produced accurate predictions that can be 
used for unknown classifications and general chemical structure/functional group 
identification. The Wiley SmartSpectra Databases were computed based on Wiley’s high 
quality empirical Raman spectral collection. The predicted Raman data was then vetted for 
outliers and records that have low validation scores. The spectrum structure validation 
model was used for evaluating the predicted Raman spectra and how the predictions aligned 
with the associated structure. This accuracy metric is valuable and therefore will be provided 
with the final version of the predicted library as a score for spectral matching comparison.   
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An external validation test was conducted to evaluate the effectiveness of the library on 
spectral data not included in the training set, and a hit list analysis was run on the JASCO 
Raman library. The records within the chemical space boundaries were computed and used 
as a test set. This external test resulted in a corresponding spectral first hit rate of 58% 
and a top ten hit rate of 82% while producing an average hit position of 13. This result was 
very similar but slightly lower than the model’s original test set, which had a first hit rate 
of 64% and top ten hit rate of 91% while averaging a hit position of 6. These two test sets 
help illustrate the accuracy and ability of the computed library to help characterize unknown 
spectra.   

Internal experts were also able to evaluate the library’s predictions for general prediction 
composition and high molecular weight predictions. The latter analysis was important due 
to most Raman data being below 400 g/mol molecular weight. This analysis showed 
promise, as the higher molecular weight evaluation resulted in better hit list positioning 
than the JASCO test set, which confirmed that high molecular weight predicted Raman 
spectra would not be an issue. The internal experts also concluded that the best workflow 
for this library is to use it in instances where the empirical data results in low HQI, poor, or 
no matches. The internal experts determined that the library is also satisfactory for 
searching, though not as high quality as empirical data but sufficient to classify unknown 
spectra.  

In summary, the performance level of the model’s predictions validates the utility of the 
predicted data sets within Wiley’s SmartSpectra Raman Database Collection17 as a 
complementary library to the empirical reference datasets for broadening the searchable 
chemical space. The predicted libraries, when created from high quality empirical reference 
spectral databases such as Wiley’s Raman spectral collection, demonstrate a high level of 
performance approaching that of empirical databases. These libraries have shown the ability 
to characterize and classify more unknowns by enhancing the coverage within the bounds 
of Wiley’s Raman chemical space.    
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